Optimal Multiple Surface Segmentation with Convex Priors in Irregularly Sampled Space

نویسندگان

  • Abhay Shah
  • Junjie Bai
  • Michael D. Abràmoff
  • Xiaodong Wu
چکیده

Optimal surface segmentation is a state-of-the-art method used for segmentation of multiple globally optimal surfaces in volumetric datasets. The method is widely used in numerous medical image segmentation applications. However, nodes in the graph based optimal surface segmentation method typically encode uniformly distributed orthogonal voxels of the volume. Thus the segmentation cannot attain an accuracy greater than a single unit voxel, i.e. the distance between two adjoining nodes in graph space. Segmentation accuracy higher than a unit voxel is achievable by exploiting partial volume information in the voxels which shall result in non-equidistant spacing between adjoining graph nodes. This paper reports a generalized graph based optimal multiple surface segmentation method with convex priors which segments the target surfaces in irregularly sampled space. The proposed method allows non-equidistant spacing between the adjoining graph nodes to achieve subvoxel accurate segmentation by utilizing the partial volume information in the voxels. The partial volume information in the voxels is exploited by computing a displacement field from the original volume data to identify the subvoxel accurate centers within each voxel resulting in non-equidistant spacing between the adjoining graph nodes. The smoothness of each surface modelled as a convex constraint governs the connectivity and regularity of the surface. We employ an edge-based graph representation to incorporate the necessary constraints and the globally optimal solution is obtained by computing a minimum s-t cut. The proposed method was validated on 25 optical coherence tomography image volumes of the retina and 10 intravascular multi-frame ultrasound image datasets for subvoxel and super resolution segmentation accuracy. In all cases, the approach yielded highly accurate results. Our approach can be readily extended to higher-dimensional segmentations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Algorithm for Optimal Multilevel Thresholding of Irregularly Sampled Histograms

Optimal multilevel thresholding is a quite important problem in image segmentation and pattern recognition. Although efficient algorithms have been proposed recently, they do not address the issue of irregularly sampled histograms. A polynomial-time algorithm for multilevel thresholding of irregularly sampled histograms is proposed. The algorithm is polynomial not just on the number of bins of ...

متن کامل

Weakly Convex Coupling Continuous Cuts and Shape Priors

We introduce a novel approach to variational image segmentation with shape priors. Key properties are convexity of the joint energy functional and weak coupling of convex models from different domains by mapping corresponding solutions to a common space. Specifically, we combine total variation based continuous cuts for image segmentation and convex relaxations of Markov Random Field based shap...

متن کامل

Simultaneous Multiple Surface Segmentation Using Deep Learning

The task of automatically segmenting 3-D surfaces representing boundaries of objects is important for quantitative analysis of volumetric images, and plays a vital role in biomedical image analysis. Recently, graph-based methods with a global optimization property have been developed and optimized for various medical imaging applications. Despite their widespread use, these require human expert...

متن کامل

A Closed-Form Solution for Image Sequence Segmentation with Dynamical Shape Priors

In this paper, we address the problem of image sequence segmentation with dynamical shape priors. While existing formulations are typically based on hard decisions, we propose a formalism which allows to reconsider all segmentations of past images. Firstly, we prove that the marginalization over all (exponentially many) reinterpretations of past measurements can be carried out in closed form. S...

متن کامل

Fractal Modeling of Natural Terrain: Analysis and Surface Reconstruction with Range Data

In this paper we address two issues in modeling natural terrain using fractal geometry: estimation of fractal dimension, and fractal surface reconstruction. For estimation of fractal dimension, we extend the fractal Brownian function approach to accommodate irregularly sampled data, and we develop methods for segmenting sets of points exhibiting self-similarity over only certain scales. For fra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.03059  شماره 

صفحات  -

تاریخ انتشار 2016